3. Key Components
• Impeller or rotor – A series of radial blades are attached to a hub. The assembly of the hub and blades is called impeller or rotor. As the impeller rotates, it creates a pressure difference and causes airflow.
• Motor – It drives the blades so they may turn. It may be direct drive with the wheel mounted on the motor shaft or belt driven with the wheel mounted on its own shaft and bearings. It is important to note that fans may also be driven by other sources of motive power such as an internal combustion engine, or steam or gas turbine.
• Housing – Encloses and protects the motor and impeller.
4. Safety Issues
Continuously moving fresh, uncontaminated air through a confined space is the most effective means of controlling an atmospheric hazard. Ventilation dilutes and displaces air contaminants, assures that an adequate oxygen supply is maintained during entry, and exhausts contaminants created by entry activities such as welding, oxygen-fuel cutting, or abrasive blasting (North Carolina State University 2001).
5. Cost and Energy Efficiency
In certain situations, fans can provide an effective alternative to costly air conditioning. Fans cool people by circulating or ventilating air. Circulating air speeds up the evaporation of perspiration from the skin so we feel cooler. Ventilating replaces hot, stuffy, indoor air with cooler, fresh, outdoor air. Research shows moving air with a fan has the same affect on personal comfort as lowering the temperature by over 5˚F. This happens because air movement created by the fan speeds up the rate at which our body loses heat, so we feel cooler. Opening and closing windows or doors helps the fan move indoor air outside and outdoor air inside, increasing the efficiency of the fan. When it is hot outside, close windows and doors to the outside. In the morning or evening, when outdoor air is cooler, place the fan in front of a window or door and open windows on the opposite side of the room. This draws cooler air through the living area (EPCOR 2001).
In many applications, fan control represents a significant opportunity for increased efficiency and
reduced cost. A simple and low-cost means of flow control relies on dampers, either before or after the fan. Dampers add resistance to accomplish reduced flow, while increasing pressure. This increased pressure results in increased energy use for the flow level required. Alternatives to damper flow control methods include physical reductions in fan speed though the use of belts and pulleys or variable speed controllers.
• Motor – It drives the blades so they may turn. It may be direct drive with the wheel mounted on the motor shaft or belt driven with the wheel mounted on its own shaft and bearings. It is important to note that fans may also be driven by other sources of motive power such as an internal combustion engine, or steam or gas turbine.
• Housing – Encloses and protects the motor and impeller.
4. Safety Issues
Continuously moving fresh, uncontaminated air through a confined space is the most effective means of controlling an atmospheric hazard. Ventilation dilutes and displaces air contaminants, assures that an adequate oxygen supply is maintained during entry, and exhausts contaminants created by entry activities such as welding, oxygen-fuel cutting, or abrasive blasting (North Carolina State University 2001).
5. Cost and Energy Efficiency
In certain situations, fans can provide an effective alternative to costly air conditioning. Fans cool people by circulating or ventilating air. Circulating air speeds up the evaporation of perspiration from the skin so we feel cooler. Ventilating replaces hot, stuffy, indoor air with cooler, fresh, outdoor air. Research shows moving air with a fan has the same affect on personal comfort as lowering the temperature by over 5˚F. This happens because air movement created by the fan speeds up the rate at which our body loses heat, so we feel cooler. Opening and closing windows or doors helps the fan move indoor air outside and outdoor air inside, increasing the efficiency of the fan. When it is hot outside, close windows and doors to the outside. In the morning or evening, when outdoor air is cooler, place the fan in front of a window or door and open windows on the opposite side of the room. This draws cooler air through the living area (EPCOR 2001).
In many applications, fan control represents a significant opportunity for increased efficiency and
reduced cost. A simple and low-cost means of flow control relies on dampers, either before or after the fan. Dampers add resistance to accomplish reduced flow, while increasing pressure. This increased pressure results in increased energy use for the flow level required. Alternatives to damper flow control methods include physical reductions in fan speed though the use of belts and pulleys or variable speed controllers.
No comments:
Post a Comment